A Representation-valued Relative Riemann-hurwitz Theorem and the Hurwitz-hodge Bundle
نویسندگان
چکیده
We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible G-covers. This formula can be interpreted as a representation-ringvalued relative Riemann-Hurwitz formula for families of admissible G-covers.
منابع مشابه
A Relative Riemann-hurwitz Theorem, the Hurwitz-hodge Bundle, and Orbifold Gromov-witten Theory
We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible Gcovers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for fam...
متن کاملThe Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group Sn. We also fin...
متن کاملOn Hurwitz Numbers and Hodge Integrals
In this paper we find an explicit formula for the number of topologically different ramified coverings C → CP 1 (C is a compact Riemann surface of genus g) with only one complicated branching point in terms of Hodge integrals over the moduli space of genus g curves with marked points.
متن کاملEvaluating tautological classes using only Hurwitz numbers
Hurwitz numbers count ramified covers of a Riemann surface with prescribed monodromy. As such, they are purely combinatorial objects. Tautological classes, on the other hand, are distinguished classes in the intersection ring of the moduli spaces of Riemann surfaces of a given genus, and are thus “geometric.” Localization computations in Gromov-Witten theory provide non-obvious relations betwee...
متن کاملHodge-type integrals on moduli spaces of admissible covers
Hodge integrals are a class of intersection numbers on moduli spaces of curves involving the tautological classes λi, which are the Chern classes of the Hodge bundle E. In recent years Hodge integrals have shown a great amount of interconnections with Gromov-Witten theory and enumerative geometry. The classical Hurwitz numbers, counting the numbers of ramified Covers of a curve with an assigned...
متن کامل